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Abstract. A Reservoir Computing approach is used in this work for
generating a rich nonlinear spatial feature from the dynamical projec-
tion of a limited-size input time series. The final state of the Recurrent
neural network (RNN) forms the feature subsequently used as input to
a regressor or classifier (such as Random Forest or Least Squares). This
proposed method is used for fraud detection in the energy distribution
domain, namely, detection of non-technical loss (NTL) using a real-world
dataset containing only the monthly energy consumption time series of
(more than 300K) users. The heterogeneity of user profiles is dealt with
a clustering approach, where the cluster id is also input to the classifier.
Experimental results shows that the proposed recurrent feature genera-
tor is able to extract relevant nonlinear transformations of the raw time
series without a priori knowledge and perform as good as (and sometimes
better than) baseline models with handcrafted features.
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1 Introduction

In the context of energy distribution networks, frauds are non-technical losses
(NTL) that may account for up to 40% of the total energy distributed in some
developing countries. Fraudsters alter (or bypass) the eletricity meter in order
to pay less than the right amount. Many different methods have been used for
devising fraud detection models [4, 5]. These methods usually require feature
engineering on the consumptions time series data in order to train classifiers for
fraud detection. Other features can also be employed such as the ones derived
from customer data (e.g., spatial coordinates, neighborhood, type of residence,
etc.) and textual notes written by employees of the energy distribution network
responsible for reading the meters monthly - however, these notes are scarce.
Whenever a note is written with respect to a customer’s meter, there is a high
probability of fraud. In order to verify the fraud, an inspector is sent to the
field, i.e., a specialist makes a visit to the customer’s residence in order to check
the eletricity meter and confirm the fraud. Three outcomes are possible out of
an inspection: the fraud is confirmed, there is an anomaly incurring NTL (e.g.
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faulty meter or fraud not affirmed), or there was no fraud (there may also be some
mislabeled data for the cases of bribery or other causes). Thus, the remaining
non-inspected customers are not used in the supervised learning of the model
(which can cause the so-called sample selection bias [6]). In this context, the
discovery or detection of frauds is necessary to decrease the NTL of the energy
distribution networks. Predictive models devised to this end have to be used with
parsimony since the cost to send a inspector to confirm the fraud is expensive.
Thus, only the most certain predictions (those with highest score) could be
used for sending inspections, for instance. Previous work on NTL detection has
employed different approaches, types of inputs and dataset sizes. For instance,
[9] focuses on feature engineering with random forest, logistic regression and
support vector machine as classifiers. A survey on this field is presented in [5],
citing also other approaches based on fuzzy systems, genetic algorithms, etc.

This work proposes a new general purpose temporal feature extraction based
on recurrent neural networks (RNNs) that projects the input stream u(t) into
a high-dimensional dynamic space x(t). This projector is called reservoir as
in Reservoir Computing (RC), whose recurrent weights are randomly initial-
ized [11]. The states x(t) of the resulting dynamical system form a trajectory
in the high-dimensional space that exhibits a short-term memory. This means
that when a snapshot is taken from the dynamical system (i.e, at t = ts), the
states x(ts) sums up the recent history of the input stream. The main idea is
to transform the temporal dimension of u(t) into a spatial dimension of the
snapshoted state x(ts). In this work, this last state is used as a feature for a
predictive model, which can be a regressor or a classifier. The proposed method
is applied to fraud detection in the energy distribution domain where million of
users with heterogeneous energy consumption profiles exist. Our work considers
that the short-length time series consumption data from each user is the sole in-
put available to the model. The proposed model also employs k-means clustering
to preprocess the heterogeneous input time series as well as to provide cluster
information as an additional relevant input. The resulting method is novel as
far as the authors know, specially in the fraud detection domain. The experi-
ments presented in this work show that the general-purpose recurrent feature
generator achieves predictive performance at least as good as models considering
handcrafted input features, and that large reservoirs and cluster information is
useful mainly when using Least Squares training.

2 Methods

2.1 Recurrent dynamical projection

Our proposed method views an RNN as an automatic temporal feature genera-
tor. It transforms an input stream into a set of spatial nonlinear features that
sums up the trajectory of the underlying input-driven dynamical system (see
Fig. 1(a)). The RNN model we use is based on the Echo State Network (ESN)
approach [7, 8]. The state update equation for the reservoir is given by:

x(t+ 1) = f(Winu(t) + Wresx(t) + Wbias) (1)
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where: u(t) represents the input at time t; x(t) is the M -dimensional reservoir
state; and f() = tanh() is the hyperbolic tangent activation function; Win and
Wbias are the weight matrices from input and bias to reservoir, respectively
and Wres represents the recurrent connections between internal nodes of the
reservoir. The initial state is x(0) = 0. The non-trainable weights Win, Wres

and Wbias are randomly generated from a Gaussian distribution N(0, 1) or a
uniform discrete set {−1, 0, 1}. After this random initialization, the matrix Win

(Wbias ) is scaled by the parameter called input scaling υinp (bias scaling υbias).
Additionally, the Wres matrix is rescaled so that the reservoir has the echo state
property [7], that is, the spectral radius ρ(Wres) (the largest absolute eigenvalue)
of the linearized system is smaller than one [7]. This means that the reservoir
should have a fading memory such that if all inputs are zero, the reservoir states
also approach zero within some time period. The configuration of the reservoir
parameters are given in Section 3.

In this work, the reservoir is used to generate a high-dimensional feature
at t = N (i), i.e., the reservoir states x(N (i)), where N (i) is the size of the ith

input time series u(i)(t), which in our case is the unidimensional monthly energy
consumption series. We should care that this input time series is short enough
compared to the size of the reservoir such that the reservoir has enough memory
to generate a dynamical state x(N (i)) summing up the main characteristics of
the input stream throughout time. For each ith time series, there is a feature
vector x(N (i)) generated using (1) and a corresponding label y(i) indicating the
class of the ith sample - fraud (1) or non-fraud (0). The mapping x(N (i))→ y(i)

is then learned by any regression or classification algorithm (Fig. 1(b)), such as
Regularized Least Squares (Ridge Regression) or Random Forest.

2.2 Clustering and Normalization

The time series data (u(i)(t)) may contain very heterogeneous streams that vary
on different scales. In our current application, this means that some customers
consume 1000 times more energy than others (e.g., industrial or commercial
customers in relation to residential clients). Even only using normalization, the
results would be sub-optimal since some samples (from high energy consumption
profiles) would drive the reservoir near the saturation region of the tanh function,
while others would take it to linear area around zero. We would like that the ith

sample (u(i)(t), t = 0, . . . , N (i)) be in a scale not very different from the rest of
the samples. At the same time, we can keep the information from the original
scale of the sample (consumption profile of the user) that might be lost after
rescaling. Both of these things can be easily accomplished by using a clustering
method such as k-means. The method work as follows: compute the mean m(i)

of u(i)(t); use k-means to group the samples into clusters β(i) based on the value
m(i); rescale each sample u(i)(t) by dividing it over the value of the center of the
cluster β(i). Now, all the samples will have less disparate scales. To compensate
the loss of information, we concatenate the one-hot encoding c(i) of the cluster
β(i) into the total input vector for the classifier (see Fig. 1(b)). The resulting
architecture is called Temporal Machine (TM). A similar approach with respect
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Fig. 1. (a) Recurrent Feature Generator (RFG). The reservoir is a non-linear dynam-
ical system usually composed of recurrent sigmoid units. Solid lines represent fixed,
randomly generated connections. The dashed lines show a hypothetical reservoir tra-
jectory, ending up into a final state x(N) that sums up the recent history of the signal.
(b) The learning machine with the temporal feature generated by RFG and the cluster
id as input. We call Temporal Machine the conjunction of RFG + the learning module.

to using the one-hot encoding of the cluster id as input to RC networks is taken
in [2]. In [1], a binary input vector is used for robot behavior learning through
subspace projection in the dynamical reservoir space.

3 Experiments

3.1 Datasets

The complete dataset obtained from a certain energy distribution network in
Brazil contains 3.6M customers, from which at least 800K were inspected for
fraud. In this work, we only consider samples that span at least N = 24 months
of collected energy consumption, while having a mean consumption over this
time period greater than zero. These constraints reduce the dataset to 313, 297
samples, each one consisting of a time series u(i)(t), t = 0, . . . , N − 1.

3.2 Settings and Results

We made experiments using regularized Least Squares (LS) (ridge regression)
[3], and random forest (RF)1 as the regressor/classifier in the learning module
of TM (Fig. 1(b)). These models are called TM-LS and TM-RF, respectively.
The RF method always uses 30 trees in the forest and a maximum depth of
20. Furthermore, comparisons to baseline models are made: instead of x(i) being
generated by the RFG, it is manually computed as an 8-dimensional feature
vector composed of the means and the standard deviations of the time series

1 RF uses the method provided in the sklearn Python toolbox (version 0.17.1)
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over the following periods: the previous 24 months, 12 months, 6 months, and 3
months. Their corresponding acronyms are LS and RF (without TM ) for Least
Squares and Random Forest, respectively. The reservoir size is M = 100, unless
otherwise stated. Two parameters of the reservoir in the RFG are optimized
with a grid search on a validation set: the spectral radius and the input scaling.
This is done ten times with reservoirs whose weights are randomly initialized
each time. The average AUC (area under the ROC curve) is shown in Fig. 2(a).
The maximum performance is achieved for high values of the spectral radius
(ρ(Wres) = 1) but low values of the input scaling (υinp = 0.3). With this optimal
set of parameters, the TMs were trained using Least Squares and Random Forest
on the first 80% samples and tested on the most recent 20% of the samples. The
resulting ROC curves on the test set are computed using each trained model
and also the baseline models LS and RF (Fig. 3). We can note that the TMs
using the RFG achieves comparable performance to the baseline models with
handcrafted simple features (mean and std). Additionally, the Random Forest
training method seems to have better test performance than the Least Squares
method. This can also be seen in Fig. 2(b), where M is varied while keeping other
parameters fixed, showing that greater reservoirs matter more to Least Squares
training (improving performance) than to the Random Forest method. Table 1
shows the same test AUC of the models in Fig. 3 plus two models where the
reservoirs have 500 neurons (TM500-LS and TM500-RF) and other two models
LS and RF without the cluster id as input. Note that the cluster id is important
when LS is used, but not as much as when RF is used as training method.

Another type of evaluation was made in order to observe how the predictive
model would perform on a sliding-through-time iterative train and test proce-
dure. Fig. 4(a) shows the results of this evaluation considering the Least Squares
method for training the models LS, TM-LS, and TM500-LS. Each point is one
iteration of the procedure, in which a grid search on spectral radius vs input
scaling is run with a validation set to find the best parameter configuration, and
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Fig. 2. (a) Grid search on spectral radius vs. input scaling showing the AUC on valida-
tion sets averaged over 10 runs each with different randomly initialized reservoirs. (b)
AUC test performance vs. reservoir size for TM-RF and TM-LS in dashed and solid
lines, respectively.
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Fig. 3. (a) ROC curves on test sets (20% of the data) for 4 models: LS, RF, TM-LS
and TM-RF.

then the model is evaluated on a different test set corresponding to the current
month. The next iteration will slide the current month into the training dataset,
and the new test set will be formed by samples of the following month. On aver-
age, we can see that the first two models have equal performance (the horizontal
lines represent the average AUC). The latter uses a greater, more complex reser-
voir (M = 500) that can perform a little better due to its increased power for
representation and temporal processing. The same procedure now with Random
Forest as learning method can be visually checked in Fig. 4(b). The TM-RF
model with 100 neurons in the reservoir is not as performant as the RF model.
However, both of them are better then the models based on LS, on average
(Table 2). The results of the sliding evaluation show that the performance is
better throughout 2014 until the first quarter of 2015. In 2016, the performance
drops relative to the mean AUC. One possible explanation is that detection
of frauds may have explanatory variables other than the energy consumption
time series not considered in this work. As a matter of comparison, [9] achieves
AUC of 0.729 using random forests and handcrafted feature engineering. Their

Table 1. AUC - fixed test set

Model Test AUC

LS (no cluster input) 0.604
RF (no cluster input) 0.654

LS 0.621
RF 0.656

TM-LS 0.627
TM-RF 0.649

TM500-LS 0.630
TM500-RF 0.653

Table 2. Average test AUC over sliding
evaluation

Model Average Test AUC

LS 0.671
TM-LS 0.672

TM500-LS 0.678
RF 0.701

TM-RF 0.688



Recurrent Dynamical Projection for Time series-based Fraud detection 7

dataset is similar to the one used in this work, although being bigger, filtered
and preprocessed differently, without sliding evaluations performed.

4 Conclusion

In this paper, a fraud detection method based on Reservoir Computing is pro-
posed for detecting electricity theft having as input solely the energy consump-
tion time series of each customer. To deal with the heterogeneous user consump-
tion profiles, k-means clustering is employed for normalization of all the time
series according to the cluster it was assigned to. The RC approach allows us
to extract relevant temporal features from short-length time series by project-
ing the input into a high-dimensional nonlinear space. The trajectory of this
input-driven dynamical system ends up into a final state which sums up the
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Fig. 4. Sliding evaluation: iterative training on data starting in 2015 throughout 2016,
testing each time on the following month (using AUC). Average AUC given by hor-
izontal lines. (a) All models trained by ridge regression (regularized Least Squares
estimate). (b) All models trained by Random Forest.
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input time series behavior over time. The input feature used for the classifier
is exactly this last state of the reservoir, showing comparable performance with
baseline models using handcrafted features. The method effectively converts the
temporal dimension into a spatial one, and although it was used for detecting
non-technical loss in electricity grids (with real-world data) in this paper, it
can also be used for general-purpose time series-based classification tasks (e.g.
fraud detection). However, as the reservoir without output feedback has a limited
short-term memory [7], the time series can not be indefinitely long. Furthermore,
future work will research methods to optimize the reservoir dynamics (e.g., In-
trinsic Plasticity [10]) in order to generate even better features. In the context
of the real-world task of NTL detection, the next crucial step is to consider
additional input variables such as user neighborhood, type of connection, etc.
into a integrated framework which corrects the existing sample selection bias,
currently considered an obstacle to the optimal use of such models.
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